Graduates in tertiary education, in science, math., computing, engineering, manufacturing, construction, by sex - per 1000 of population aged 20-29 ta_eductrain_parteduc_numbgrad__educ_uoe_grad04

Time format:
Years
Unit:
Rate per 1000 population (comparable)
AL
EU27_2020
EU28
NL
PL
RS
TR
LI
MT
MK
CY
HU
EL
LU
BG
LV
LT
BE
HR
IS
AT
CZ
RO
EE
IT
NO
DK
FR
ES
FI
DE
IE
PT
SK
SE
CH
UK
SI
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
AL
0.3
0.1
EU27_2020
0.7
0.6
0.6
0.6
0.7(d)
0.7
0.7(d)
0.7(d)
0.7(d)
EU28
0.8
0.8(d)
0.8
0.8(d)
0.8(d)
0.7(d)
NL
0.4
0.5
0.4
0.5
0.4
0.4
(d)
PL
0.3(de)
0.2
0.2
0.3
0.3
0.2
0.3
0.3
0.2
(d)
RS
0.5
0.4
0.5
0.5
0.7
0.7
0.6
0.5
0.3
TR
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.1
LI
0
1.3
0.9
0.5
0
0
0
0
0
MT
0.2
0.1
0.2
0.1
0.1
0.2
0.2
0.2
0.1
0.1
MK
0.2
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
CY
0.3
0.4
0.3
0.3
0.2
0.2
0.3
0.2
0.2
0.2
HU
0.4
0.3
0.2
0.3
0.3
0.2
0.2
0.3
0.3
0.2
EL
0.5
0.6
0.5
0.5
0.4
0.5
0.5
0.4
0.4
0.3
LU
1.3
0.7
0.4
0.6
0.5
0.7
0.4
0.4
0.2
0.3
BG
0.4
0.4
0.4
0.4
0.4
0.5
0.5
0.5
0.5
0.4
LV
0.4
0.3
0.2
0.3
0.3
0.3
0.3
0.4
0.4
0.4
LT
0.6
0.4
0.4
0.4
0.4
0.4
0.3
0.4
0.4
0.4
BE
0.7
0.7
0.6
0.6
0.6
0.5
0.6
0.6
0.5
0.5
HR
0.7
0.5
0.4
0.4
0.4
0.5
0.4
0.6
0.5
0.5
IS
0.5
0.7
0.6
0.5
0.3
0.5
0.5
0.5
0.9
0.5
AT
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.5
0.6
0.6
CZ
0.8
0.7
0.6
0.8
0.7
0.7
0.6
0.6
0.6
0.6
RO
0.3
0.4
0.2
0.3
0.2
0.2
0.3
0.5
0.5
0.6
EE
1
0.8
0.8
0.8
0.8
0.9
0.7
0.6
0.5
0.7
IT
0.7
0.6
0.6(p)
0.6
0.5
0.6(d)
0.7
0.7
0.7
0.7
NO
0.7
0.6
0.7
0.6
0.6
0.6
0.6
0.6
0.7
DK
0.8
0.8
0.7
0.8
0.8
0.8
0.9
0.9
0.8
0.8
FR
1
0.6
0.6
0.7
0.7(d)
0.9
0.8
0.8
0.8
0.8
ES
0.8
0.7
0.7
0.7
1.4
1.5
1.3
1.1
0.9
0.8
FI
0.8
0.6
0.8
0.8
0.9
0.9
1
1
0.9
0.9
DE
0.9
0.9
0.8
0.9
0.9
0.9
0.9
0.9
0.9
0.9
IE
0.9(d)
0.9(d)
0.9(d)
0.9(d)
0.9(d)
0.8
0.9
0.8
1
0.9
PT
0.7
0.6
0.6
0.7
0.8
0.8
0.9
0.8
0.8
0.9
SK
0.7
0.7
0.6
0.6
0.6
0.7
0.8
0.8
0.9
0.9
SE
0.9
0.8
0.9
0.8
0.8
0.9
0.9
1
0.9
0.9
CH
1.5
1.6
1.5
1.4
1.5
1.3
1.3
1.1
1
UK
1.4
1.3
1.2
1.1
1.1
1.1
1.1
SI
0.9
0.6
0.7
0.8
0.7
0.6
3.1
1.5
1.5
1.5

Available flags:

b break in time series c confidential
d definition differs, see metadata e estimated
f forecast i see metadata
m imputed n not significant
p provisional r revised
s Eurostat estimate u low reliability
x dropped due to insufficient sample size y unreliable due to small sample size
z not applicable